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Introduction to p-adic Numbers

In mathematics, the p-adic number system for any prime number p extends the ordinary arithmetic

of the rational numbers in a different way from the extension of the rational number system to the

real and complex number systems. The extension is achieved by an alternative interpretation of

the concept of “closeness” or absolute value. In particular, two p-adic numbers are considered to be

close when their difference is divisible by a high power of p: the higher the power, the closer they

are. This property enables p-adic numbers to encode congruence information in a way that turns

out to have powerful applications in number theory – including, for example, in the famous proof

of Fermat’s Last Theorem by Andrew Wiles.

These numbers were first described by Kurt Hensel in 1897 though, with hindsight, some of Ernst

Kummer’s earlier work can be interpreted as implicitly using p-adic numbers. The p-adic numbers

were motivated primarily by an attempt to bring the ideas and techniques of power series methods

into number theory. Their influence now extends far beyond this. For example, the field of p-adic

analysis essentially provides an alternative form of calculus.

More formally, for a given prime p, the field Qp of p-adic numbers is a completion of the rational

numbers. The field Qp is also given a topology derived from a metric, which is itself derived from the

p-adic order, an alternative valuation on the rational numbers. This metric space is complete in the

sense that every Cauchy sequence converges to a point in Qp. This is what allows the development

of calculus on Qp, and it is the interaction of this analytic and algebraic structure that gives the

p-adic number systems their power and utility.

The p in “p-adic” is a variable and may be replaced with a prime (yielding, for instance, “the 2-adic

numbers”) or another placeholder variable (for expressions such as “the ℓ-adic numbers”). The

“adic” of “p-adic” comes from the ending found in words such as dyadic or triadic. Here we will

talk about p-adic integers in most cases.

p-adic Numbers as Power Series

The most concrete way to think of p-adic integers is as formal power series with base p. This idea is

motivated by the unique decomposition of positive integers as sums of powers of p. For example, if

we take p = 3, we can write 10 as 1+0×3+1×32. Taking p = 2, we have 10 = 0+1×2+0×22+1×23.
We can do this for any nonnegative integer and any prime, and this type of construction gives us

an explicit definition of the p-adic integers as formal power series. We can also come up with a

formal power series to represent any negative integer, but these have infinitely many terms, so they

are harder to describe.
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Definition

The p-adic integers are the set of formal power series

a0 + a1p+ a2p
2 + . . .+ anp

n + . . .

where p is prime and ai are integers from {0, 1, 2, . . . , p− 1}.
This set of power series is actually a ring; as a set, it is bijective with Z/pZ[x], but the ring structure

is different. The disadvantage of this definition of the p-adic integers is that defining addition and

multiplication explicitly is difficult. It is possible to do so, but because we must deal with “carrying”

when a digit is greater than p − 1, it involves more complicated constructions than, say, those for

Z/pZ[x].
For example, if α = a0 + a1p + a2p

2 + . . . and β = b0 + b1p + b2p
2 + . . ., and α + β = γ =

c0+c1p+c2p
2+. . ., then c0 = a0+b0 mod p. To find c1, we have to solve c0+c1p = a0+b0+a1p+b1p

mod p2. Since we are going from mod p to mod p2, there is not an easy way to express c1 without

a0 and b0. To find each subsequent term, we similarly have to consider all previous ai and bi, as

well as ci. Multiplication has a similar flavor; if αβ = µ = v0 + v1p + v2p
2 + . . ., then v0 = a0b0

mod p. To find subsequent terms, we have to consider previous terms. For example, to find v1, we

must solve v0 + v1p = (a0 + a1p)(b0 + b1p) mod p2.

The Analytical Definition of p-adic Integers

The p-adic integers can also be seen as the completion of the integers with respect to a p-adic

metric. Let us introduce a p-adic valuation on the integers, which we will extend to Zp.

p-adic Absolute Value

For any integer a, we can write a = pnr where p and r are relatively prime. The p-adic absolute

value is

|a|p = p−n

It is natural to wonder how the p-adic norm behaves with addition and multiplication. Let us

discuss some properties.

Properties

For all integers a, b:

1. |a+ b|p ≤ max{|a|p, |b|p}
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2. |ab|p = |a|p|b|p

Proof

Let a = pnr and b = pms. Then, |a|p = p−n and |b|p = p−m.

1. Without loss of generality, say n ≤ m. Then,

a+ b = pnr + pms = pn(r + pm−ns)

Since a + b is at least divisible by pn (it is divisible by higher powers of p if r + pm−ns is

divisible by p), the absolute value cannot be larger than p−n. Thus,

|a+ b|p ≤ max{|a|p, |b|p}

as desired.

2. We have

ab = pn+m(rs)

Since r and s are relatively prime with p, rs cannot be divisible by p, and

|ab|p = |a|p|b|p

as desired.

Some more ways to look at it

We can also look at analysis in the p-adics; unlike in standard calculus, a series
∑

an in the p-adic

metric converges if and only if limn→∞ |an|p = 0. This condition is obviously necessary, just as in

standard calculus. It is sufficient because |x + y|p ≤ max(|x|p, |y|p); adding numbers with smaller

valuations does not have any affect on the overall valuation.

Another concept that makes sense is that of a p-adic order. The p-adic order, denoted ordp, of

the integer a = pnr would be n. Many computations, like some we will see later, are easier when

working with orders instead of absolute values.

Recall that a Cauchy sequence is a sequence (an) such that for any ϵ > 0, there exists some N ∈ N
such that for all n,m > N , |an − am|p < ϵ. Let us consider Cauchy sequences in Z with respect

to the p-adic norm. These are sequences (an) such that above some N , |an − am|p < ϵ, so the

difference between terms can be divided by higher powers of p.
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Definition

The ring Zp is the completion of Z with respect to the p-adic norm. That is, Zp is the set of all

equivalence classes of Cauchy sequences (an) where (an) and (bn) are equivalent if limn→∞ |an −
bn|p = 0.

There is a natural ring structure given by component-wise addition and multiplication. Let (an)

and (bn) be representatives in two equivalence classes. Define (an) + (bn) to be (an + bn). This

must be a Cauchy sequence. For any ϵ, there exist some N1 and N2 such that for all n,m > N1

and p, q > N2, |an− am|p ≤ ϵ and |bp− bq|p ≤ ϵ. Take N to be the maximum of N1 and N2. Then,

for any n,m > N , we have |an + bn − am − bm|p ≤ max{|an − am|p, |bn − bm|p} ≤ ϵ. So, (an + bn)

is a Cauchy sequence. Addition does not depend on choice of representative. If we have (a′n) and

(b′n), two other representatives, then we know limn→∞(an − a′n) = 0 and limn→∞(bn − b′n) = 0, so

limn→∞(an + bn − a′n − b′n) = 0.

Let us also define multiplication to be (an)(bn) = (anbn). We know that multiplication is well-

defined since

|anbn − ambm|p = |anbn − anbm + anbm − ambm|p ≤ max{|an|p|bn − bm|p, |bm|p|an − am|p}.

Since |an|p and |bn|p are both bounded by 1, we know that (anbn) is a Cauchy sequence. The same

equation shows that multiplication does not depend on choice of representative. If we take the same

equation above and substitute am for a′n and bm for b′n and take the limit as n → ∞, we get that

the absolute value approaches 0.

This definition yields two facts. Firstly, the integers are contained in the p-adic integers. For any

integer n, we can consider the Cauchy sequence (am) where each of the am = n. This sequence is

constant, so it must be Cauchy. So, we know Z ⊆ Zp. This fact implies that an equation can only

have a solution in Z if it has a solution in Zp. Secondly, the p-adic norm can be uniquely extended

to Zp. If (an) is a sequence in Zp, then we can define |(an)|p to be limn→∞ |an|p. We know that

|an|p must have a limit, as (an) is a Cauchy sequence with respect to this absolute value.

The Algebraic Definition of p-adic Integers

There is also an algebraic definition of the completion of a group, which can also give us an equivalent

definition of the p-adic integers as a completion of Z.

Definition

Let us consider a family of groups {Gi} with homomorphisms ϕji : Gj → Gi for all i ≤ j such that

ϕii is the identity on Gi and ϕki = ϕkj ◦ ϕji for all i ≤ j ≤ k. The inverse limit, denoted lim←−Gn, is
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the set of all sequences (an) with the property an ∈ Gn and ϕji(aj) = ai for all i ≤ j.

The inverse limit lim←−Gn has a natural group structure given by component-wise addition. Addi-

tionally, if the Gn are rings, then lim←−Gn inherits a ring structure. For all n, we have a natural

projection pn : lim←−Gn → Gn defined by (an) 7→ an. This map is a group homomorphism. The

completion of a group G with respect to a system of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn ⊇ · · ·

with maps ϕn+1 : G/Gn+1 → G/Gn is denoted by Ĝ and defined as lim←−G/Gn. The inverse limit

lim←−G/Gn is the set of all sequences (an) with the property an ∈ G/Gn and ϕn+1(an+1) = an for

all n.

It is noted that this definition of completion is analogous to the topological definition of completion.

The subgroups Gn provide a topology on G, as they define open neighborhoods of the identity on

G. By translation, for an element g of G, we have a basis for open neighborhoods given by g+Gn.

The Cauchy sequences (sn) in this topology are sequences such that for any Gk, there is some

N such that for all n,m > N , sn − sm is in Gk. Any Cauchy sequence gives an element of the

inverse limit. We can define pk to be the projection G → G/Gk. Then, pk(sn) = pk(sm) for all

n,m > N . If ak := pm(sn) for all n > N , then (ak) is an element of lim←−G/Gk. We can show that

the completion is the same as the inverse limit by showing that there is an inverse map, and every

element in the inverse limit yields a Cauchy sequence. If we have (ak) ∈ lim←−G/Gk, then we can

choose a sequence of representatives sn ∈ G in the equivalence classes of an ∈ G/Gn. We can show

that (sn) is a Cauchy sequence, which does not vary under choice of representative, and get that

the inverse limit and completion are equivalent.

One common special case of completions of groups is the I-adic completion of a ring R for some

ideal I. The sequence of subgroups we consider is G = R and Gn = InR. We can apply this idea,

with R = Z and I = (p), to define the p-adic integers in a different way. The p-adic integers are the

(p)-adic completion of Z, that is, lim←−Z/pnZ. The p-adic integers are a special case as told above.

The inverse limit definition of the p-adics is equivalent to the Cauchy completion of Z under the

p-adic norm. All three definitions of the p-adics are equivalent.

Now let’s discuss some other norms and concepts of p-adic numbers with a different approach to

understand solving p-adic equations. Mathematical fields are commutative rings that have mul-

tiplicative inverses for all elements. Commutative rings are sets endowed with two operations,

addition and multiplication, defined to be commutative, associative, and closed. In addition, there

exist additive and multiplicative identities. Two main examples of fields that will be used here are

Q and R. These both have multiplicative and additive inverses for each element. The multiplicative

and additive identities are 1 and 0, respectively. It can be shown that the other properties of fields

are also satisfied by Q and R. Note that Z is not a field. We denote a generic field by F .
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There are three conditions that have to be satisfied for a norm defined by | · | : F → R from a metric

space F to the non-negative real numbers:

1. |x| = 0 if and only if x = 0

2. |x+ y| ≤ |x|+ |y| (triangle inequality)

3. |xy| = |x| · |y|

We can begin to build up many norms in this way, one of them being the trivial norm:

|x| :=

0, if x = 0

1, if x ̸= 0

This satisfies the conditions of being a norm. Condition (1) is automatically satisfied. Condition

(2) works for all three cases: |x + 0| ≤ |x| + |0| because 1 = 1, |x + x| ≤ |x| + |x| because 1 < 2,

|0 + 0| ≤ |0|+ |0| because 0 = 0.

To prevent too much confusion from abstraction, it serves to be instructive to cook up a specific ex-

ample. Let’s define deg(a) to be the degree of a polynomial. If we examine the constant polynomials

we define:

deg(a) =

−∞ if a = 0

0 otherwise

If we multiply a polynomial by 0, then it becomes 0. Likewise, adding −∞ to 0 yields −∞. We

can construct a norm that agrees with our notions of the degree of polynomials:

|a| := ρdeg(a) where ρ ≤ 1

It can be checked that this is equivalent to the trivial norm, since ρ−∞ = 0 and ρ0 = 1. A norm

induces a topology on a field F by a metric (x, y) 7→ |x−y|. We are already aware of another norm,

the absolute value, which induces a distance metric on Q and R.

The p-adic norm

The common way in which we write numbers is by their decimal expansion in a series of base

ten. These are written in shorthand by a sequence of integers . . . amam−1 . . . a1a0 . . ., where the aj

terminate to the left, i.e., there exists N such that aj = 0 for all j > N and 0 ≤ aj < 10. If we

lift the restriction that all the aj are 0 beyond a certain point, we denote these as Z10. This is a
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commutative ring. Multiplication of elements is defined as the multiplication of series representing

those elements. Let a =
∑∞

i=0 ai10
i and b =

∑∞
i=0 bi10

i. Then,

ab =

( ∞∑
i=0

ai10
i

)( ∞∑
i=0

bi10
i

)

Addition is defined by adding term by term, and if ai ≥ 10, then the digit is carried over to a

higher term. In other words, addition and multiplication are the same as the way that is taught

in elementary school. More specifically, Z10 is not an integral domain since it has a zero divisor,

a nonzero element that can be multiplied by another element to yield zero, since, for example, the

product

. . . 10112

× . . . 03125

. . . 00000

is identically zero and defined as the zero element. An integral domain is a ring which does not

have any two elements that multiply to produce the zero element, i.e., there are no zero divisors.

For example, if Zp where p is a prime number, then Zp is an integral domain. Suppose we denote

x1 =
∑∞

j=0 aj1p
j , x2 =

∑∞
j=0 aj2p

j , and in general xi =
∑∞

j=0 ajip
j . The infinite sum

∑∞
i=1 xi

converges to a single value when for each j there exists an Nj such that aji = 0 for all i > Ni.

This amounts to having only a finite number of terms for each power of p in the summation. For

example, the series
∑∞

i=0 p
i converges to . . . pmpm−1 . . . p2p1.

This clearly does not converge in the absolute norm. To understand this, we introduce ordp(x),

which equals the highest power of p that divides x ∈ Q. For example, ord2(96) = 5, because 25

divides 96. In line with our notation of Zp that we developed earlier, we can also define ordp(x) in

a convenient way:

ordp(x) :=

∞ if ai = 0

min(s : as ̸= 0) otherwise

And we define a new norm, denoted | · |p by,

|x|p :=

0 if ai = 0 for all i

p−ordp(x) otherwise

It can be noted that this has convergence in the sense described earlier; this will be elaborated on

later. First, |0|p = 0, so Condition (1) of the definition of a norm is satisfied. Moreover, Condition

(3), which implies |ab|p = |a|p|b|p, is satisfied trivially when either a or b is zero. But if they

are not zero, then |ab|p = p−ordp(ab) = p−(ordp(a)+ordp(b)) = p−ordp(a)p−ordp(b) = |a|p|b|p. Another
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consequence of this norm is the strong triangle inequality:

|x+ y|p ≤ max(|x|p, |y|p)

It can be noted that the triangle inequality is automatically satisfied, since max(|x|p, |y|p) ≤ |x|p +
|y|p. Returning back to the example with degrees of polynomials, this time lifting the restriction

that they be constant, we find a familiar example that satisfies the strong triangle inequality:

deg(f + g) ≤ max(deg(f),deg(g))

The strong triangle inequality has various intuitively surprising and interesting consequences with

regards to the metric that it induces. Let |y| > |x|. We use the strong triangle inequality to prove

that |x− y| = |y|. First,
|x− y| ≤ max(|x|, |y|), |x− y| ≤ |y|

We can establish the converse inequality in the following way:

|y| = |x− x+ y| ≤ max(|x|, |x− y|) ≤ |x− y|

Hence we get, |x− y| = |y|.
Thus, we are confronted with what Neal Koblitz refers to as the isosceles triangle principle, meaning

that the longest two sides are always equivalent in the metric induced by a norm that satisfies the

strong triangle inequality. Another interesting consequence of the strong triangle inequality is found

by the following argument. Let’s define a “disk” D by:

D(a, r) = {x ∈ F : |x− a|p < r}

Then,

|x− b| = |(x− a) + (a− b)|p ≤ max((x− a), (a− b)) < r

Hence, the wild conclusion is that every point is at the center of the disk.

Non-Archimedean Norms

It turns out that norms on a field F that are non-Archimedean satisfy the strong triangle inequality.

Three equivalent definitions of non-Archimedean norms are as follows. A norm is non-Archimedean

if it satisfies:

1. the strong triangle inequality
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2. |n| is bounded

3. |n| ≤ 1 for every integer n

The last condition is straightforward to prove by induction. We begin with the base case: |1| =
1 ≤ 1.

The equality follows from the definition of the norms and since norms map to the nonzero reals,

|1| = |12| = | ± 1|| ± 1| ⇒ | ± 1| = 1.

Next, suppose that |k| ≤ 1 for all k ∈ {1, . . . , n− 1}. Then,

|n| = |(n− 1) + 1| ≤ max(|n− 1|, 1) = 1

This can be used to show the strong triangle inequality via the binomial expansion:

|(x+ y)n| =

∣∣∣∣∣
n∑

k=0

(
n

k

)
xkyn−k

∣∣∣∣∣ ≤
n∑

k=0

|xk||yn−k| ≤ (n+ 1)max(|x|, |y|)n

|x+ y| ≤ lim
n→∞

n
√
n+ 1max(|x|, |y|) = max(|x|, |y|)

This means that the absolute value is an Archimedean norm, while the trivial norm and the p-adic

norm are non-Archimedean.

The Completion Theorem

Every metric space M , and in our context fields F , can be completed, i.e., there exists a metric

space defined as (M̂,D) such that,

1. M̂ is complete with respect to the metric D,

2. M̂ contains a subset M̂0 isometric to M ,

3. M̂0 is dense in M̂ .

The completion for Q with respect to the absolute value is R. One of the standard ways of construct-

ing the reals is by examining the Cauchy sequences of rational numbers. Recall that a sequence is

Cauchy if,

∀ϵ > 0,∃N such that ∀n,m > N, |am − an| < ϵ

All rationals are periodic in their decimal expansion. This can be proven by expanding in a geometric

sequence. For the same reason, any rational number in its expansion in any base is periodic,
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including the p-adic expansions. Therefore, we can construct irrational numbers by producing

sequences that are aperiodic in their decimal form. For example, the sequence

0.101, 0101101, 101101101, . . .

is Cauchy convergent to an irrational number, since the digits are aperiodic. Of course, π is also

irrational because it is aperiodic. Hence, we define the reals as the set of all equivalence classes of

Cauchy sequences of rational numbers. This “fills in the holes” because rationals converge to every

irrational.

The p-adic numbers are expressed in base-p expansion as,

. . . amam−1 . . . a1a0.a−1a−2 . . .

where an = 0 for large n. If an = 0 for all n > 0, these are the p-adic integers Zp as defined

previously. It can be noted that since the terms terminate to the right, the values of the p-adic

norm are:

{0} ∪ {pn : n ∈ Z}

The p-adic numbers written in this way can be shown to be Cauchy. Suppose that the lowest

nonzero term is a−m. Then,∣∣∣∣∣
k∑

−m

dip
i −

n∑
−m

dip
i

∣∣∣∣∣
p

=

∣∣∣∣∣
k∑

n+1

dip
i

∣∣∣∣∣
p

≤ max(|di|p) ≤ p−N

since 0 ≤ di ≤ p. The following theorem requires considerable proof, which is omitted. It basically

asserts that the way we have been writing p-adic numbers up to this point is valid.

Uniqueness Theorem:

Each p-adic number can be uniquely written as the sum of a convergent series of the form,

∞∑
−∞

anp
n where an = 0 for large n and 0 ≤ an < p

It is noted that this uniqueness does not work for decimal expansions. For example, 1.0̄ = 0.9̄.

These are two unique ways of writing the number congruent to 1. Rational numbers can be written
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in the p-adic expansion and are eventually periodic to the left (instead of the right for the standard

decimal expansion). For example,

1

2
= . . .

(
p− 1

2

)(
p− 1

2

)(
p+ 1

2

)
.0000 . . .

This can be seen to be true by multiplying out all terms by 2. Negative values also have an infinite

p-adic expansion. For example,

−1 = . . . (p− 1)(p− 1)(p− 1).0000 . . .

To see this, we can add 1:

0 = . . . (p− 1)(p− 1)(p).0000 . . . = . . . (p− 1)(p)0.000 . . . = . . . (p)00.000 . . . = . . . 000.000 . . .

Because p is prime, it also follows that no p-adic integers solve the equation x2 = p. To solve this

equation, we would have to find a p-adic number x that would square to equal . . . 0010.000 . . .. Let

x = . . . a2a1a0.000 . . .. To solve the equation, a necessary condition is a20 ≡ p (mod p). However,

this has no solution because a prime is not a square number. The question remains whether p-adic

numbers are the whole story as far as norms go.

Ostrowski’s Theorem

Ostrowski’s Theorem: Each non-trivial norm on the field of the rational numbers is equivalent

either to the absolute value function or to some p-adic norm.

This theorem establishes the classifications of norms on the rationals. It has profound consequences.

Lemma: Two norms on a field F are equivalent if they induce the same topology on F . More

concretely, if | · |1 and | · |2 are equivalent norms, then there exists a positive real number c such

that | · |1 = | · |c2.

Existence of a Root: We revisit the question of solving algebraic equations in the field of p-adic

numbers. There are some strange results that conflict with our intuition of series expansions. For

example, revisiting the p-adic expansion from earlier of −1, we see:

−1 = . . . (p− 1)(p− 1)(p− 1).00000 . . .

which appears even stranger when written as a series expansion (which it is implicitly in the above
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condensed form). For concreteness, let us choose p = 7. The non-intuitive result is:

−1 = 6 + 6× 7 + 6× 72 + 6× 73 + . . .

Now we develop some tools using modular arithmetic in order to be able to solve for equations in

p-adic integers, something which we noted was impossible for x2 = p. In general, since we have

expanded our p-adic number in terms of base-p, we can say that an element α of Qp is congruent

to its series expansion a0 + a1p+ . . .+ ai−1p
i−1 mod pi.

From now on, the prime p is fixed. Given a polynomial with rational coefficients f(x), is it

possible to find a p-adic number α such that f(α) = 0? This amounts to showing that f ≡ 0

mod pi for all i ∈ N. If we already have a solution f(a0) ≡ 0 mod p, then we use an iterative

method to derive the results in general. We assume a solution for the next iteration: a0 + a1p.

Hence, defining the polynomial function f =
∑∞

i=0 ci, we get,

f(a0 + a1p) =

∞∑
i=0

ci(a0 + a1p)
i

=

∞∑
i=0

((
i

0

)
cia

i
0 +

(
i

1

)
cia

i−1
0 a1p

)
+ higher order terms

≡
∞∑
i=0

(cia
i
0 + ic1a

i−1
0 a1p) mod p2

= (f(a0) + f ′(a0)a1p) mod p2

= (h0p+ f ′(a0)a1) mod p

Where h0 is an integer 0 ≤ h0 < p because f(a0) ≡ 0 mod p. Extrapolating this result to

higher order terms, we obtain the general result, where αn−1 is the p-adic series expansion of α up

to its an−1 term:

αnf
′(αn−1) + hn−1 ≡ 0 mod p

where f(αn−1) ≡ hn−1p
n mod pn+1. The result being that a solution exists for hn ̸= 0 as long as

f ′(αn−1) ̸= 0. Otherwise, the uniqueness of hn would fail. One further simplification can be made.

We note that αn−1 = a0 + pq, where q = a1 + a2p+ . . .+ an−1p
n−2 is an integer. Thus, proceeding

in a process similar to the one above, we obtain the result:

f ′(αn−1) = f ′(a0) + f ′′(a0)pq + . . .

f ′(αn−1) ≡ f ′(a0) mod p
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Thus reducing the equation to,

αnf
′(a0) + hn−1 ≡ 0 mod p

Summarily, we have that the equation f(x) = 0 will have a solution in Qp if f(x) ≡ 0 mod p

has a solution x = a0 such that f ′(a0) ̸= 0 mod p.

We use an example to illustrate the abstract derivation above. Consider solving for the square

root of 7 in its 3-adic expansion. In other words, we solve the equation f(x) = x2 − 7 for a 3-adic

number x. The first step is to find a20 ≡ 7 mod 3. The solutions are a0 = 1, 2. We choose a0 = 1

and apply the equation above. f(a0) = −6 ≡ 3 mod 9 = 3h0 mod 9, so h0 ≡ 1 mod 3; f ′(a0) = 2

mod 3. The equation becomes:

2a1 + 1 ≡ 0 mod 3⇒ a1 = 1; α1 = 1 + 1× 3 = 4

So, for our next iteration, we get from the above equation that f ′(a0) ≡ 2 mod 3 as before,

f(α1) ≡ 9 mod 27 so 9× h1 mod 27 ≡ 3 implies that h1 ≡ 1 mod 3. Solving for a2 gives a2 = 1.

Continuing in this way, we can uniquely solve for αn provided that the derivative is nonzero.

Continuing this process yields:

α4 = 1 + 1× 3 + 1× 32 + 0× 33 + 2× 34 + . . .

This shows the existence of at least one solution to the roots of the polynomial f(x), but does

not make any assertions about the other zeros.

Thurston’s Method

H. S. Thurston relies on a technique of successive approximations using a “chain of equations” to

analyze some marginal cases that cannot be dealt with using only the analysis of f(x). Let

f(x) = xn + cn−1x
n−1 + . . .+ c1x+ c0

The chain of equations is:

f(x) = 0, F1(x) = 0, F2(x) = 0, . . . , Fi(x) = 0
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where the coefficients of the solution α are determined successively by each Fi(x). Given a solution

f(α) = 0, then if we write α = a0 + α1p, where α1 = a1 + a2p+ a3p
2 + . . .,

f(a0 + α1p) = (a0 + α1p)
n + cn−1(a0 + α1p)

n−1 + . . .+ c1(a0 + α1p) + c0

=

n∑
j=1

cj(a
j
0 + jaj−1

0 α1p+ higher order terms)

= f(a0) + f ′(a0)α1p+ . . .+ αn
1p

n = 0

Letting f(a0) = k0p, then we define

F1(x) = k0 + f ′(a0)x+ . . .+ xnpn−1 = 0

So we can see that α1, and by construction αi, is a solution to Fi(x) = 0, because

f(α) = pF1(α1) = p2F2(α2) = . . . = pkFk(αk)

There are two cases that cannot be solved by methods in MacDuffee’s paper and are treated in

Thurston’s paper. The first is where Fi = Fj for all j > i. The second case is where f(a0) ≡
f ′(a0) ≡ 0, and therefore Fi(ai) ≡ F ′

i (ai) ≡ 0 mod p for all i. We first address the simpler case

where F1(x) = f(x). In this case,

F1(x) = k0 + f ′(a0)x+ . . .+ xnpn−1 = f(x)

Then f(a0 + px) = pnF1(x), since f(x) is a monic polynomial, meaning that the leading coefficient

is 1. Solving for a coefficient of cn−k can be calculated through induction. Here, the induction

which gives rise to the results quoted in the Thurston paper is produced. First, we check the base

case:

cn−1 =

(
1

pn

)(
cn−1p

n−1 + na0p
n−1
)

=
cn−1

p
+

na0
p

=
na0
p− 1

Solving for cn−2, the base case:

cn−2 =

(
1

pn

)(
cn−2p

n−2 + cn−1(n− 1)a0p
n−2 +

(
n

2

)
a20p

n−2

)

cn−2(p
2 − 1) = cn−1(n− 1)a0 +

(
n

2

)
a20

14



cn−2(p
2 − 1) = (cn−1)

2

(
n

2

)(
2(n− 1)a0(p− 1)

n2a0
+

(p− 1)2a20
n2a20

)

cn−2 =

(
n

2

)(cn−1

n

)2(2p− 2 + p2 − 2p+ 1

p2 − 1

)
cn−2 =

(
n

2

)(cn−1

n

)2
Now let’s assume,

cn−(k+1) =

(
n

k

)(
a0

p− 1

)k

We induct on the index k:

cn−(k+1) =

(
1

pn

)(
cn−(k+1)p

n−(k+1) +

(
n− k

1

)
a0cn−kp

n−(k+1) + . . .+

(
n

k + 1

)
ak+1
0 pn−(k+1)

)

cn−(k+1)(p
k+1 − 1) =

k+1∑
j=1

cn−(k−j+1)

(
n− (k − j + 1)

j

)
aj0

=

k+1∑
j=1

(
n

k − j + 1

)(
a0

p− 1

)k−j+1(
n− (k − j + 1)

j

)
aj0

=

(
n

k + 1

)
(ak+1

0 )

k+1∑
j=1

(k + 1)!

(k − j + 1)!j!(p− 1)k−j+1

=

(
n

k + 1

)(
a0

p− 1

)k+1 k+1∑
j=1

(
k + 1

j

)
(p− 1)j

=

(
n

k + 1

)(
a0

p− 1

)k+1 (
((p− 1) + 1)k+1 − 1

)
=

(
n

k + 1

)(
a0

p− 1

)k+1

(pk+1 − 1)

because the binomial expansion runs from index 0 to k + 1, while this ran from 1 to k + 1, hence

the extra −1 term. Thus, we get the result cited in Thurston’s paper:

cn−(k+1) =

(
n

k + 1

)(
a0

p− 1

)k+1

The coefficients are integral, and since 0 ≤ a0 < p, it follows that a0 = 0 or p− 1. This means that

f(x) = xn when a0 = 0 or f(x) = (1 + x)n when a0 = p − 1. Thus, if f(x) = F1(x), then we get

a fairly simple expression for how to solve the polynomial. This can be generalized to say that if
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Fi(x) = Fj(x) for every i > j, then Fj(x) = (x+ 1)n or Fj(x) = xn.

For there to exist such an Fj(x), then a necessary and sufficient condition for Fj(x) = xn or

Fj(x) = (1 + x)n is that f(x) = (x − a)n or f(x) = (x + a)n, respectively. The derivation behind

this is outlined in Thurston’s paper and will not be reproduced here.

The second case, where f(a0) ≡ f ′(a0) ≡ 0, and Fi(ai) ≡ F ′
i (ai) ≡ 0 mod p, proceeds by first

assuming that f(x) has no multiple roots. If α were a multiple root of f(x), then Thurston asserts

that f ′(x) would have a multiple root of order n. This is because f(x) could be written as follows:

f(x) = (x− α)ng(x)

And its derivative would be:

f ′(x) = (x− α)ng′(x) + n(x− α)n−1g(x)

So α would still be a root of f ′(x) and thus Fi(αi) = F ′
i (αi) = 0. If we assume that f(x) has no

multiple roots, but f(a0) ≡ f ′(a0) ≡ 0, then f(a0 + a1p) ≡ 0 mod p2 since the first two terms in

the expansion are f(a0) + f ′(a0)a1p = 0. Since the first two terms do not depend on a1, we can

replace a1 with x and write that f(a0+xp) ≡ 0 mod p2. If we write f(a0+xp) = pβ1F1(x), where

β1 = n in the first case above, we can see that β1 ≥ 2, because f(a0 + xp) ≡ 0 mod p2 and f(x) is

monic, we can factor out at least pβ1 , where β1 ≥ 2. Taking the derivative of f(a0+xp) = pβ1F1(x),

we get:

f ′(a0 + xp)p = pβ1F1(x)

Hence, plugging in a1 for x, we get:

f ′(a0 + a1p) = pβ1−1F1(a1)

By the assumption above that Fi(ai) ≡ F ′
i (ai) ≡ 0 mod p, then F ′

1(a1) ≡ 0 mod p, so f ′(a0 +

a1p) ≡ 0 mod pβ1 . This means that a0 + a1p is a multiple root of f(x) ≡ 0 mod pβ1 . If we define

F1(x)(a1 + xp) = pβ2F2(x), then an identical process yields:

f ′(a0 + a1p+ a2p
2) ≡ 0 mod pβ1+β2−1

meaning that a0 + a1p + a2p
2 is a multiple root of f(x) ≡ 0 mod pβ1+β2−1. By induction, the

process yields that a0 + a1p + a2p
2 + . . . is a multiple root of f(x) = 0, which contradicts the

hypothesis. This final result tells us that either there is no solution, or if multiple roots have been

eliminated, then at some finite value m, Fm(am) ≡ 0, but F ′
m(am) ̸= 0 mod p. This results in the

striking conclusion that it is possible to solve for all possible simple (non-multiple) roots in a finite

number of steps. The process is as follows: first, we have to find a solution a0 to f(x) ≡ 0 mod p.

Then find a solution a1 to F1(x) ≡ 0 mod p. We have to proceed in this way finding solutions ai
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to Fi(x) ≡ 0 mod p until either there is no solution, or if F ′
i (x) ̸= 0 mod p, then this indicates

the existence and uniqueness of a solution.

Final Note

In this report, we have explored the realm of p-adic numbers and their fundamental properties,

alongside the method of solving p-adic equations. Throughout the exploration, we encountered

numerous key terminologies, theorems, and lemmas that provided the foundational understanding

necessary for grasping the intricacies of p-adic numbers. We hope this exposition has clarified the

theory and its applications.
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